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Statistical analysis of genealogical trees for polygamic species
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Repetitions within a given genealogical tree provide some information about the degree of consanguineity of
a population. They can be analyzed with techniques usually employed in statistical physics when dealing with
fixed point transformations. In particular, we show that the tree features strongly depend on the fractions of
males and females in the population, and also on the offspring probability distribution. We check different
possibilities, some of them relevant to human groups, and compare them with simulations.

PACS numbes): 87.10+e, 05.40--a, 64.60.Ak, 64.60.Fr

One of the main problems encountered in efforts to pregenerations into the past, the number of ancestors would
serve species from extinction is genetic diversity. Indeedlargely exceed the population itself. The only way out from
besides environmental threats to the welfare of a species, this paradox is to assume that relatives indeed mate among
less obvious but nonetheless extremely important issue emselves. As a consequence some individuals appear more
related to the largeness of the genetic pool from which théhan once in the genealogical tree of their descendéinds
genes of an individual are taken. Such a problem is related tt§, more than one branch of the tree had origin from such
the degree of consanguinity within the population: the mordndividuals, thus reducing the genetic pool from which their
relatives mate among themselves, the more reduced is tf#€nes are taken.
genetic diversity of the population. There are examples in the We take a population oN individuals, and we assume
wilderness of species with a relatively small genetic varietythat it does not change in time. There is a fractid of
from molecular biology it is known that cheetahs, for ex-males and (+f)N of females, and this fraction remains
ample, show a high degree of consanguinity, probably due tgonstant in time. Every male mates, therefore, on the aver-
some bottleneck in the number of individuals in their popu-age, with 1f —1 females. Here in general we make fjpe-
lation some ten thousands of years ago; in human societies, litically uncorrec) assumption that the fraction of males is
is well known that high rank aristocrats in Europe kept mar-less than 1/2. Since in this model there is no difference be-
rying only among themselves. As a consequence, the appedween males and females, the opposite situation is obtained
ance of a hemophiliac individual spread the genetic diseas&ith a transformationf—1—f (everything is symmetric
all over the reigning houses of Europe. This example shedwith respect tof=1/2). We apply and extend the same
light on the relevance of the genetic diversity of a populationscheme as developed in RgL], generalizing it to the case
for its conservation: species with a small genetic pool aredf male fractions different from 1/2.
weaker against genetic diseases. The above examples showGiven an individual in the present generation, we are in-
that genetic redundancy can come as a consequence ofterested in the number of times its ancestors at a previous
reduced population. generatiorg appear in the genealogical tree of that individual

In this paper we address the same problem from a differ¢at g=1 we find parents, aj=2 the grandparents, and so
ent(but we believe complementargtandpoint: we are inter- on). We therefore definen,(g) [f,(g)] as the number of
ested in the genealogical trees of individuals of speciesnales(female$ appearing times at generatiog in the ge-
where the male-to-female ratio is not 1 as in humérere  nealogical tree of an individual at generation 0, the present
we define this ratio taking into account only males and fe-one.
males that are sexually matyiréAmong such examples we The normalization of,(g) andf,(g) implies that we can
can name lions, sea lions, and some antelopes, where eashite
successfully reproducing male mates with more than one fe-
male (similar arguments could also be applied to polygamic " -
human groups Extreme cases are insects like bees and ter- _ _
mites, V\?herepfor every reproductive feméatpieen there are zo m(g)Ar=fN, 2’0 fr(@ar=1-nHN, @)
very many males.

We measure the genetic redundancy in the gene pool of
an individual by measuring the number of times that one ofvhereAr =1 trivially (but it is useful to write it explicitly
its ancestors many generations in the past appears more thf future rescalings Since an individual at generation 0 has
once in its genealogical tree. Indeed, if no relatives would® * male ancestorénot necessarily distingat generations
mate among themselves then, since every individual has @ (and 2~* female ancestors as wglwe can also write
mother and a father, it would havé ancestorg generations
in the past, half of them males and half of them females. o o
Each of th_em would appear only once in the genealogical z rmr(g)Ar=E rf, (g)Ar=29"1, )
tree of their present descendents. Going back some tens of r=0 r=0
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We define then the probabilities connectednip(g) and
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Dividing Eq. (10) for 297 1/(1—f)N, we obtain an analo-

f,(g). These are probabilities defined over the population agous equation for females.

generatiorg. Therefore, we have

f.(9)

Fr(g)=m- ©)

m,(g)
fN

Mr(g)=
Using Eqgs.(3) we rewrite Egs(1) as
2, Mi(@)Ar=2 Fi(g)Ar=1 4

and Eqgs.(2) as

* 2 -1 «© 2971
zoer(g)Arz N 20 rF,(g)Ar=—(1_f)N.
5
Finally we rescale, F,(g), andM,(g) as
g-1 g-1
Pu(r.9)=— M(9), PF(r,g)ZmFr(g).
(6)
N _(1-f)N
WM(g)—FF, WE(9)= P

With these definitions, Eq$4) become
| Pt @rdw= [ Prwe grdwe=1, @
and Eqgs.(5) become
j:WMPM(WM ,9)dwy = fOxWFPF(WFag)dWle- 8

From Eq.(7) we see thaP,,(w), ,g) andPg(wg,g) can

be considered true probabilities. Next, we can write a system

of equations fow,,(g) andwg(g). A malei at generation

g+1 in the past has a number of repetitions that is given by

the number of repetitions of his children at generatgpn
Therefore,

i@+ D= Xy (g)+ Tei(9), (9)
jsonofi jdaughter of i
and, analogously for females,
rei(gt)= > 1y i(@)+ Te(9).
jsonofi j daughter of i
(10)

Dividing the first equation for 2 1/fN, we obtain
IR R
Wy =_ Wy i —
M’I(g 2jsonofi M'J(g 2(1-1)

X > we(9). (12)

j daughter of i

We assume a stablen the averagepopulation ofN in-
dividuals divided into two parts whose proportions are also
(on the averagestable. Therefore, the number of sons
(daughtersthat an individual can have has to obey well de-
fined probability distributions. In our simulations we proceed
backward in time, keeping the population fixed\aand the
male proportion fixed af. Since we assign to every indi-
vidual a couple of parents at random in the previous genera-
tion, the corresponding son to daughter probability distribu-
tions are binomials distributions. More precisely, the
probability that a male hals sons is

FNY /1 \K 1\ fN=k
st~ [ o2
and that he hak daughters is
(L—F)N\ [ 1\ 1\ (@-HN-k
pmf(k):( K )(m) (1—m (13

Analogous distributions can be written fqos(k) and
Prm(K).

We assume that the population is very larfje{ ) and
that all thew’s are independertthis is verified in the limit of
largeN). In this limit the offpring probabilities become

-1

e
pmm(kvf):pff(k-f)zw,
(14)

e~ (1N 1 _f\k
; .

Pmi(K,f)=pim(k,1—f)= a0

In the casef =1/2 we recover the distributions used in Ref.

[1].

Upon defining the generating functions

[

GgO\):f e MMPy (Wy ,g)dwy

0
(15)

Hg(u)= fo e MFPe(We,g)dwe,

we find then that Eq(11) become

©

CHRINEDD

k=0

)\' k
Gg(E) } pmf(])

N
21—f/|"

> Pam(k)
j=0

where the equation for females has also been written explic-
itly.
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FIG. 1. Left: Asymptotic fraction of males and females who do - o
not belong to the genealogical tree of a given individual in the FIG._2. Male and female repetition probabilities after 2(_) and 30
present generation. Circles and squares are data from simulatio@§nerationsthe latter are marked by arropor a male fractionf
for 30 generations over a population of 20000 individuals, Withfl/16. In the inset we show the collapse of the rescaled distribu-
(from right to lefy f=1/2, 1/3, 1/5, 1/8, and 1/16. Right: Exponent 10Nns-
B as a function of the fractioh of males. . ) .
Next we expand Eq.18) around the fixed point assuming

Substituing Eq(14) into Eq. (16), after some algebra, we that Py(wy)~God(wy)+wh" and Pe(we)~Hod(we)

obtain +w€F for wy, ,wg—0, which translates, by Tauberian theo-
rems, to
_ 1 N 1-f Nf
CoraM)=exf = £+ Gol 5|+ Hol 3 777 | G(\)=Go+AyA ™AL H(p)=Ho+Apu At
(17) (20
1 f wl—f ,U«) for N, u— . Equations(18) then become
Horalp)=exq =75+ 775 5 75 o2 Ao/ 1_f|Aetl
Go| 2PM+ 1+ —F(z—) NPM =B (=1,
These equations are clearly symmetricfin 1—f, since Awm f
we do not make any distinction between males and females ¢\ Bt (22)
apart from the male proportioi Hol 285+ 14 ﬂ(z_) uPF v =1,
Next, we analyze the stationary equatiogs;«: Flo1-f
1 Ny 1—f [N f Equations(21) are well defined only if8y,= 8= 8, and
G(M)=exg — ¢+ +G| 5|+ ——H|57—]| therefore, after some algebra, we obtain
f 2 f 21-f
(18 B+1 -
1 f w1t M 2P (Ho+Gp) =1, (22
H(u)=exg — + Gl = H{ =] 1. . .
1-f 1-f 12 f 2 from which we can calculate the exponghas a function of

f, shown in Fig. 1(right).
The probability that a maléa femalg in the past does not  From Eq.(19) it is also possible to obtain the analytic
appear in the genealogical tree of a given individual in thepehavior ofH,, G,, andg close tof =0:
present generation is recovered sending —oo (by Taub-
erian theorems, the limik,u—o corresponds to the limit ‘ J2
rm.re=0). Therefore, upon callingGo=G(*) and Hg Go~e M, Ho~1-V2f, p~-1+ ﬁfl/z (23
=H(»), we have

As an example of distributions, in Fig. 2 we shdiy(g)
Gozexp( _ £+Go+ LfHo), andF,(g), [Eq. (3)] and in the inset their rescaled counter-
f f part according to Eq(6), for f=1/16. The exponeng is
(19 negative, as from our analytical calculations. Th&inction
for r=0 has been omitted for scale reasons.
The dependence @ from f shows that such an exponent
is highly nonuniversal, and that it is extremely sensitive to
These equations can be solved numerically and the solutiotihe explicit form of the distribution§l4). This becomes im-
is shown in Fig. 1(left) (the results of the simulations agree portant when looking at real data. In the 1930s LofR&
with this solution up to the third significative digit fitted the probability of a man to havesons in the United

1 f
H0=ex;{ — ﬁ+ EGO‘F HO
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States by a geometric distributipp=b,,.ck. 1 fork#0 and  Poisson distributionfl]. We find, therefore, that neith&,
Po=dmm, wWith ¢,,,=0.5893,d,,,=0.4825, andb,,,, cho- and Hy nor B are universal, although their behavior with
sen for normalization. Clearly, such a distribution is not arespect tof does not, qualitatively, depend on the details of
Poisson distribution as used above. Moreover it would give ahe chosen offspring distribution. Actually, the relevance of
rate of increase in the population Nf;/Ng,,=1.26. the distribution to be used is hardly overestimated: one
Since in the definition oP andw in Eq. (6) depend org,  should take distributions obtained from the analysis of real
the particular value oy can be explicitly incorporated into  data, in order to draw more detailed conclusi¢8k
it. The left hand side of Eq(11) is now multiplied by The present results show that, besides bottlenecks in the
Ng/Ng-1. The probabilities for a male to be son of a male popylation size, there may be other factors affecting the
and a female to be daughter of a female will be those o argeness of the genetic pool from which the genes of an
Lotka, and the other ones can be evaluated by maintainingydividual are taken. Indeed, for species with a very low
the fraction of males and females in the population constant;aye off, we find that most females do not contribute to the
which translates into the constraints genes of an individual in the present generation, whereas
1-d 1—f N 1-d N most maleswho are anyway a little fractiofi of the entire
mf_ 9 fm_ 9 (24)  population do. As an extreme cas@nd exchanging males
1-cme  f Ngea' 1-Crn 1-f Ngyg with females, in the absence of interbreeding between dif-
ferent hives, a single bee queen gives its genes to all subse-
quent generations. Some genetic mutation will rapidly be-

We can then rewrite Eq17) as

Ng (1= Cm) (1= A G4(M/2) come a genetic trait of the Wh_ole progeny. In the case o_f bad
N—Gg+1(>\)= dmm™ 1—c. G, 2) mutations, they could well wipe out the whole fam|ly line.
g+l mm=g Although not dangerouper se since bees and alike are ex-
(1= Cnp) (L= dmp)Hg(A/2) tremely numerous, such a feature can make the species more
X | At 1—c. H(N2) ) sensitive to population size fluctuations.
mflg In conclusion, we have generalized and analyzed the
N (1= i) (1= dg ) Gy wl2) (29 model proposed in Ref1] to the realistic case of species and
— Hga(p)=| dim+ i n9 ) human groups with male-to-female mating ratios different
Ng+1 1-cimGy(u/2) from 1. Our results point out that the genes of an individual
(1—ce)(1—dip)Hy(u/2) are taken from a pool whose largeness strongly depends on
X| dgst+ ) the male-to-female ratio, with important consequences when
1-cHg(u/2)

the population size strongly fluctuates. We are currently in-
vestigating the coupling effects between these different fac-
tors. Yet our results, although qualitatively of general appli-
cability, clearly show that quantitative estimates can only
come when the analytical treatment is implemented with
field data, since, as it is evident from Fig(l&ft) and(right),
different offspring probability distributions give rise to dif-

male fractions. Moreover, for simplicity, we chooge=1 . "o - iitative results. This is a highly nonuniversal
—c for the four probability distributions, in such a way problerr? ' am

that they become genuine geometric distributions:
Pmm(K) =P (K) =1/21, pk)=F(1—1)%, and pim(k) We thank F. Guinea for useful comments and discussions.
=(1—f)f* The results forG, and H, are shown also in P. D. L. R. thanks the Instituto de Ciencia de Materiales in
Fig. 1 (left). The exponen is shown in Fig. 1(right). G  Madrid, where this work was begun, for its kind hospitality.
and H, approach their limit forf —0 asf'2 In particular, This work was partially supported by the European Network
the values foif =1/2 are clearly different from the ones with Contract No. FMRXCT980183.

Here we examine two different cases. First we tékel/2
and allcs andds as from Lotka. We find that the probability
Go=Hy=0.231, different from the one obtained with Pois-
son distributiong1]. Then we impose that the population
size remains constarifl;=Ng, 4, but allow for different
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Lett. 82, 1987(1999. candidate matching efficient simulations in the laigdimit,
[2] A. J. Lotka, J. Wash. Acad. ScRl, 377 (1931); 21, 453 but once this limit has been taken, we are free to use whatever
(1931). Both references cited in T. E. Harrihe Theory of distribution we like.
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