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Statistical analysis of genealogical trees for polygamic species
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Repetitions within a given genealogical tree provide some information about the degree of consanguineity of
a population. They can be analyzed with techniques usually employed in statistical physics when dealing with
fixed point transformations. In particular, we show that the tree features strongly depend on the fractions of
males and females in the population, and also on the offspring probability distribution. We check different
possibilities, some of them relevant to human groups, and compare them with simulations.

PACS number~s!: 87.10.1e, 05.40.2a, 64.60.Ak, 64.60.Fr
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One of the main problems encountered in efforts to p
serve species from extinction is genetic diversity. Inde
besides environmental threats to the welfare of a specie
less obvious but nonetheless extremely important issu
related to the largeness of the genetic pool from which
genes of an individual are taken. Such a problem is relate
the degree of consanguinity within the population: the m
relatives mate among themselves, the more reduced is
genetic diversity of the population. There are examples in
wilderness of species with a relatively small genetic varie
from molecular biology it is known that cheetahs, for e
ample, show a high degree of consanguinity, probably du
some bottleneck in the number of individuals in their pop
lation some ten thousands of years ago; in human societie
is well known that high rank aristocrats in Europe kept m
rying only among themselves. As a consequence, the app
ance of a hemophiliac individual spread the genetic dise
all over the reigning houses of Europe. This example sh
light on the relevance of the genetic diversity of a populat
for its conservation: species with a small genetic pool
weaker against genetic diseases. The above examples
that genetic redundancy can come as a consequence
reduced population.

In this paper we address the same problem from a dif
ent ~but we believe complementary! standpoint: we are inter
ested in the genealogical trees of individuals of spec
where the male-to-female ratio is not 1 as in humans~here
we define this ratio taking into account only males and
males that are sexually mature!. Among such examples w
can name lions, sea lions, and some antelopes, where
successfully reproducing male mates with more than one
male ~similar arguments could also be applied to polygam
human groups!. Extreme cases are insects like bees and
mites, where for every reproductive female~queen! there are
very many males.

We measure the genetic redundancy in the gene poo
an individual by measuring the number of times that one
its ancestors many generations in the past appears more
once in its genealogical tree. Indeed, if no relatives wo
mate among themselves then, since every individual ha
mother and a father, it would have 2g ancestorsg generations
in the past, half of them males and half of them femal
Each of them would appear only once in the genealog
tree of their present descendents. Going back some ten
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generations into the past, the number of ancestors wo
largely exceed the population itself. The only way out fro
this paradox is to assume that relatives indeed mate am
themselves. As a consequence some individuals appear
than once in the genealogical tree of their descendents~that
is, more than one branch of the tree had origin from su
individuals!, thus reducing the genetic pool from which the
genes are taken.

We take a population ofN individuals, and we assum
that it does not change in time. There is a fractionf N of
males and (12 f )N of females, and this fraction remain
constant in time. Every male mates, therefore, on the a
age, with 1/f 21 females. Here in general we make the~po-
litically uncorrect! assumption that the fraction of males
less than 1/2. Since in this model there is no difference
tween males and females, the opposite situation is obta
with a transformationf→12 f ~everything is symmetric
with respect to f 51/2). We apply and extend the sam
scheme as developed in Ref.@1#, generalizing it to the case
of male fractions different from 1/2.

Given an individual in the present generation, we are
terested in the number of times its ancestors at a prev
generationg appear in the genealogical tree of that individu
~at g51 we find parents, atg52 the grandparents, and s
on!. We therefore definemr(g) @ f r(g)# as the number of
males~females! appearingr times at generationg in the ge-
nealogical tree of an individual at generation 0, the pres
one.

The normalization ofmr(g) and f r(g) implies that we can
write

(
r 50

`

mr~g!Dr 5 f N, (
r 50

`

f r~g!Dr 5~12 f !N, ~1!

whereDr 51 trivially ~but it is useful to write it explicitly
for future rescalings!. Since an individual at generation 0 ha
2g21 male ancestors~not necessarily distinct! at generations
g ~and 2g21 female ancestors as well!, we can also write

(
r 50

`

rmr~g!Dr 5(
r 50

`

r f r~g!Dr 52g21. ~2!
5620 ©2000 The American Physical Society
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We define then the probabilities connected tomr(g) and
f r(g). These are probabilities defined over the population
generationg. Therefore, we have

Mr~g!5
mr~g!

f N
, Fr~g!5

f r~g!

~12 f !N
. ~3!

Using Eqs.~3! we rewrite Eqs.~1! as

(
r 50

`

Mr~g!Dr 5(
r 50

`

Fr~g!Dr 51 ~4!

and Eqs.~2! as

(
r 50

`

rM r~g!Dr 5
2g21

f N
, (

r 50

`

rF r~g!Dr 5
2g21

~12 f !N
.

~5!

Finally we rescaler, Fr(g), andMr(g) as

PM~r ,g!5
2g21

f N
Mr~g!, PF~r ,g!5

2g21

~12 f !N
Fr~g!,

~6!

wM~g!5
f N

2g21
r , wF~g!5

~12 f !N

2g21
r .

With these definitions, Eqs.~4! become

E
0

`

PM~wM ,g!dwM5E
0

`

PF~wF ,g!dwF51, ~7!

and Eqs.~5! become

E
0

`

wMPM~wM ,g!dwM5E
0

`

wFPF~wF ,g!dwF51. ~8!

From Eq.~7! we see thatPM(wM ,g) andPF(wF ,g) can
be considered true probabilities. Next, we can write a sys
of equations forwm(g) and wF(g). A male i at generation
g11 in the past has a number of repetitions that is given
the number of repetitions of his children at generationg.
Therefore,

r M ,i~g11!5 (
j son o f i

r M , j~g!1 (
j daughter o f i

r F, j~g!, ~9!

and, analogously for females,

r F,i~g11!5 (
j son o f i

r M , j~g!1 (
j daughter o f i

r F, j~g!.

~10!

Dividing the first equation for 2g21/ f N, we obtain

wM ,i~g11!5
1

2 (
j son o f i

wM , j~g!1
f

2~12 f !

3 (
j daughter o f i

wF, j~g!. ~11!
t

m

y

Dividing Eq. ~10! for 2g21/(12 f )N, we obtain an analo-
gous equation for females.

We assume a stable~on the average! population ofN in-
dividuals divided into two parts whose proportions are a
~on the average! stable. Therefore, the number of so
~daughters! that an individual can have has to obey well d
fined probability distributions. In our simulations we proce
backward in time, keeping the population fixed atN and the
male proportion fixed atf. Since we assign to every indi
vidual a couple of parents at random in the previous gen
tion, the corresponding son to daughter probability distrib
tions are binomials distributions. More precisely, t
probability that a male hask sons is

pmm~k!5S f N

k D S 1

f ND kS 12
1

f ND f N2k

, ~12!

and that he hask daughters is

pm f~k!5S ~12 f !N

k D S 1

f ND kS 12
1

f ND (12 f )N2k

. ~13!

Analogous distributions can be written forpf f(k) and
pf m(k).

We assume that the population is very large (N→`) and
that all thew’s are independent~this is verified in the limit of
largeN). In this limit the offpring probabilities become

pmm~k, f !5pf f~k, f !5
e21

k!
,

~14!

pm f~k, f !5pf m~k,12 f !5
e2(12 f )/ f

k! S 12 f

f D k

.

In the casef 51/2 we recover the distributions used in Re
@1#.

Upon defining the generating functions

Gg~l!5E
0

`

e2lwMPM~wM ,g!dwM ,

~15!

Hg~m!5E
0

`

e2mwFPF~wF ,g!dwF ,

we find then that Eq.~11! become

Gg11~l!5 (
k50

`

(
j 50

`

pmm~k!FGgS l

2D Gk

pm f~ j !

3FHgS l

2

f

12 f D G
j

,

~16!

Hg11~m!5 (
k50

`

(
j 50

`

pf m~k!FGgS m

2

12 f

f D Gk

pf f~ j !

3FHgS m

2 D G j

,

where the equation for females has also been written exp
itly.
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Substituing Eq.~14! into Eq. ~16!, after some algebra, w
obtain

Gg11~l!5expF2
1

f
1GgS l

2D1
12 f

f
HgS l

2

f

12 f D G ,
~17!

Hg11~m!5expF2
1

12 f
1

f

12 f
GgS m

2

12 f

f D1HgS m

2 D G .
These equations are clearly symmetric inf→12 f , since

we do not make any distinction between males and fem
apart from the male proportionf.

Next, we analyze the stationary equations,g5`:

G~l!5expF2
1

f
1GS l

2D1
12 f

f
HS l

2

f

12 f D G ,
~18!

H~m!5expF2
1

12 f
1

f

12 f
GS m

2

12 f

f D1HS m

2 D G .
The probability that a male~a female! in the past does no

appear in the genealogical tree of a given individual in
present generation is recovered sendingl,m→` ~by Taub-
erian theorems, the limitl,m→` corresponds to the limi
r M ,r F50). Therefore, upon callingG05G(`) and H0
5H(`), we have

G05expS 2
1

f
1G01

12 f

f
H0D ,

~19!

H05expS 2
1

12 f
1

f

12 f
G01H0D .

These equations can be solved numerically and the solu
is shown in Fig. 1~left! ~the results of the simulations agre
with this solution up to the third significative digit!.

FIG. 1. Left: Asymptotic fraction of males and females who
not belong to the genealogical tree of a given individual in
present generation. Circles and squares are data from simula
for 30 generations over a population of 20 000 individuals, w
~from right to left! f 51/2, 1/3, 1/5, 1/8, and 1/16. Right: Expone
b as a function of the fractionf of males.
es

e

on

Next we expand Eq.~18! around the fixed point assumin
that PM(wM);G0d(wM)1wM

bM and PF(wF);H0d(wF)

1wF
bF for wM ,wF→0, which translates, by Tauberian the

rems, to

G~l!5G01AMl2bM21, H~m!5H01AFm2bF21

~20!

for l,m→`. Equations~18! then become

G0F2bM111
AF

AM
S 2

12 f

f D bF11

lbM2bFG51,

~21!

H0F2bF111
AM

AF
S 2

f

12 f D
bM11

mbF2bMG51.

Equations~21! are well defined only ifbM5bF5b, and
therefore, after some algebra, we obtain

2b11~H01G0!51, ~22!

from which we can calculate the exponentb as a function of
f, shown in Fig. 1~right!.

From Eq. ~19! it is also possible to obtain the analyt
behavior ofH0 , G0, andb close tof 50:

G0;e2A2/f , H0;12A2 f , b;211
A2

ln 2
f 1/2 ~23!

As an example of distributions, in Fig. 2 we showMr(g)
andFr(g), @Eq. ~3!# and in the inset their rescaled counte
part according to Eq.~6!, for f 51/16. The exponentb is
negative, as from our analytical calculations. Thed function
for r 50 has been omitted for scale reasons.

The dependence ofb from f shows that such an expone
is highly nonuniversal, and that it is extremely sensitive
the explicit form of the distributions~14!. This becomes im-
portant when looking at real data. In the 1930s Lotka@2#
fitted the probability of a man to havek sons in the United

ns

FIG. 2. Male and female repetition probabilities after 20 and
generations~the latter are marked by arrows! for a male fractionf
51/16. In the inset we show the collapse of the rescaled distr
tions.
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States by a geometric distributionpk5bmmcmm
k21 for kÞ0 and

p05dmm, with cmm50.5893, dmm50.4825, andbmm cho-
sen for normalization. Clearly, such a distribution is no
Poisson distribution as used above. Moreover it would giv
rate of increase in the population ofNg /Ng1151.26.

Since in the definition ofP andw in Eq. ~6! depend ong,
the particular value ofNg can be explicitly incorporated into
it. The left hand side of Eq.~11! is now multiplied by
Ng /Ng11. The probabilities for a male to be son of a ma
and a female to be daughter of a female will be those
Lotka, and the other ones can be evaluated by maintain
the fraction of males and females in the population const
which translates into the constraints

12dm f

12cm f
5

12 f

f

Ng

Ng11
,

12df m

12cf m
5

f

12 f

Ng

Ng11
. ~24!

We can then rewrite Eq.~17! as

Ng

Ng11
Gg11~l!5S dmm1

~12cmm!~12dmm!Gg~l/2!

12cmmGg~l/2! D
3S dm f1

~12cm f!~12dm f!Hg~l/2!

12cm fHg~l/2! D ,

~25!
Ng

Ng11
Hg11~m!5S df m1

~12cf m!~12df m!Gg~m/2!

12cf mGg~m/2! D
3S df f1

~12cf f !~12df f !Hg~m/2!

12cf fHg~m/2! D .

Here we examine two different cases. First we takef 51/2
and allcs andds as from Lotka. We find that the probabilit
G05H050.231, different from the one obtained with Poi
son distributions@1#. Then we impose that the populatio
size remains constantNg5Ng11, but allow for different
male fractions. Moreover, for simplicity, we choosed51
2c for the four probability distributions, in such a wa
that they become genuine geometric distributio
pmm(k)5pf f(k)51/2k11, pm f(k)5 f (12 f )k, and pf m(k)
5(12 f ) f k. The results forG0 and H0 are shown also in
Fig. 1 ~left!. The exponentb is shown in Fig. 1~right!. G0
and H0 approach their limit forf→0 as f 1/2. In particular,
the values forf 51/2 are clearly different from the ones wit
ev
a

f
g
t,

:

Poisson distributions@1#. We find, therefore, that neitherG0

and H0 nor b are universal, although their behavior wit
respect tof does not, qualitatively, depend on the details
the chosen offspring distribution. Actually, the relevance
the distribution to be used is hardly overestimated: o
should take distributions obtained from the analysis of r
data, in order to draw more detailed conclusions@3#.

The present results show that, besides bottlenecks in
population size, there may be other factors affecting
largeness of the genetic pool from which the genes of
individual are taken. Indeed, for species with a very lo
value off, we find that most females do not contribute to t
genes of an individual in the present generation, wher
most males~who are anyway a little fractionf of the entire
population! do. As an extreme case~and exchanging male
with females!, in the absence of interbreeding between d
ferent hives, a single bee queen gives its genes to all su
quent generations. Some genetic mutation will rapidly b
come a genetic trait of the whole progeny. In the case of
mutations, they could well wipe out the whole family lin
Although not dangerousper se, since bees and alike are ex
tremely numerous, such a feature can make the species
sensitive to population size fluctuations.

In conclusion, we have generalized and analyzed
model proposed in Ref.@1# to the realistic case of species an
human groups with male-to-female mating ratios differe
from 1. Our results point out that the genes of an individu
are taken from a pool whose largeness strongly depend
the male-to-female ratio, with important consequences w
the population size strongly fluctuates. We are currently
vestigating the coupling effects between these different f
tors. Yet our results, although qualitatively of general app
cability, clearly show that quantitative estimates can o
come when the analytical treatment is implemented w
field data, since, as it is evident from Fig. 1~left! and~right!,
different offspring probability distributions give rise to dif
ferent quantitative results. This is a highly nonunivers
problem.
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